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ABSTRACT
We present an algorithm which adapts a graph-based ranking model
to the context of the problem of improving the process of serving
advertisements to users. We transform the ad-based clickstream
data into a heterogeneous graph model which respects differences
in feature types (e.g. geolocation features, or browser-history fea-
tures). The heterogeneous network model generates meaningful
rankings of features which are predictive for each ad, as demon-
strated by our classifier’s performance. We also discuss how, in
addition to serving as the basis for a classifier, this model may also
provide an informative view of the data, which is not possible with
black-box approaches, and which therefore makes it very suitable
to the problem space of targeted ad serving.

Categories and Subject Descriptors
H.4.M [Information Systems Application]: Miscellaneous
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Targeted Advertising, Information Network, Feature Ranking

1. INTRODUCTION
Digital marketers run many marketing campaigns in order to

maximize their website revenue, which is sometimes measured in
terms of click-through-rate (CTR). Each campaign consists of many
different kinds of offers that may be shown to website visitors. The
goal of the campaign is to optimize ad offer selection by targeting
the visitors based on any available information, to maximize both
user experience and CTR. Figure 1 shows an example of an offer
displayed to visitors to Adobe.com, the homepage of a computer
software company.

A variety of such information as visitors’ geolocation, time-related
attributes, browsing history, etc, are collected for targeted ad serv-
ing. There are many approaches to learning user behavior models
from this data, treating each visitor record as one single feature vec-
tor. However, most previous work has not attempted to preserve the
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Figure 1: An example of a targeted ad offered on Adobe.com

implicit structures and relationships of different data types, which
may carry additional useful information. Recent work by Xu et al.
[10] exploits the interaction of different data types by developing a
multiview hierarchical bayesian regression model to improve CTR
prediction accuracy. However, this approach can only handle two
different data types. Our framework uses a graph-based classifier
which works on a heterogeneous information network [5, 6, 9] and
is therefore flexible enough to handle multiple data types.

In this paper, we present our Information Graph Model (IGM),
a work-in-progress which adapts a graph-based ranking method to
the problem of improving the process of serving advertisements
to users. We train a classification model to predict user response,
treating ads as class labels and leveraging different feature types in
a graph structure. We show that our model can generate meaning-
ful rankings of features which are predictive for each class label,
as demonstrated by the classifier’s performance. Additionally, this
model can provide an informative view of the data, which is not
possible with black-box approaches, and which therefore makes it
very suitable to the problem space of targeted ad serving.

2. IGM ALGORITHM
The IGM algorithm transforms an ad-based clickstream dataset

into a heterogeneous information network with a star schema [9].
Once in this form, we apply a graph-based ranking method [5] to
construct a model of the dataset. Finally, we construct a classifier
to be used for future records.

2.1 Network Construction and Ranking

2.1.1 Node Definition
Within this work, we assume that we are working with an ad-

based clickstream dataset, consisting of a set of records, where each



record represents a user and contains a number of feature variables,
information about an ad that was served, and binary clickthrough
information, which labels the record as being positive or negative
depending on whether or not the user clicked on the ad. We further
assume that during some preprocessing stage, each feature variable
has been categorized into B categories.

The first step is to transform this dataset into an information net-
work structure. A information network is a graph G = 〈V, E ,W〉
containing m different types of nodes where V =

⋃m
i=1 Xi, E is

the set of links between any two data objects of V , andW is the set
of weight values on the links. If m = 1, we refer to G as a homo-
geneous information network; otherwise, if m ≥ 2, G is known as
a heterogeneous information network.

The clickstream dataset contains m different types of features
(e.g., geolocation features). We therefore transform each feature F
into B binary features F1 . . . FB , where the value of a categorized
feature Fb is 1 for a given record if that record originally exhibited
the value b for the feature F . Each feature has also been labeled as
belonging to a specific feature type (e.g. geolocation feature type,
URL parameter values feature type, etc.).

We then transform these binary features into nodes in our net-
work, where each node thus represents one category Fn of a par-
ticular feature F . Thus, each original feature F is transformed into
B nodes. However, if a particular binary feature does not occur in
any records with a positive label (user clicked on the ad), we cannot
learn much from this feature, and so we do not construct this node.
Two nodes can then be thought of as co-occurring with respect to
a given record if the binary features from which the nodes were
constructed both had a value of 1 (click) for that record.

We construct our network to follow a star schema [9], where one
type of node serves as the central (star) objects, and the rest of the
nodes are attributes (a link may exist only between a central node
and an attribute node, but never between central objects, or between
aattribute nodes). Considered as a classification problem, the cen-
tral object of a star schema can be thought of as the label object
type, and every attribute object as a feature. We treat the ads served
for each record as proxies for the latent class label for that record.
The set of potential ads is transformed into a set of central object
nodes, and each feature is transformed into an attribute node. Al-
though each central object node theoretically represents a class, we
do not place this as a strict constraint on the network, and instead
allow each central object to have a distribution over all classes, with
a bias towards the class it should represent.

Figure 2 illustrates a sample schema of one central object node -
the ad - and 7 attribute object nodes - the features - with different
feature types denoted by the node shape and color.

Figure 2: IGM Sample Schema: Three kinds of example fea-
ture types presented with different node shape and color

2.1.2 Edge Weight Definition
The next step is to specify the edges (and edge weights) of the

network. In a heterogeneous information network G, withm object
types, the links between two data objects of types Xi and Xj may
be represented by a relationship graph Gij , i, j ∈ {1, . . . ,m}. This
allows us to differentiate among the relationships between different
pairs of object types. Let Rij be an ni × nj relation matrix corre-
sponding to graph Gij , i.e., Rij represents the relationship between
objects of type Xi and objects of type Xj (in a general network
schema, it is possible that i = j). In this way, each heterogeneous
network G can be mathematically represented by a set of relation
matrices G = {Rij}mi,j=1. Note that since our network is a star
schema, the only edges that exist are between a central object and
an attribute object, as shown in Figure 2.

The weight on the link 〈xip, xjq〉 is thus defined by the value
of the p-th row and q-th column of Rij , denoted as Rij,pq . The
general definition for Rij,pq is:

Rij,pq =

{
f(xip, xjq) if link 〈xip, xjq〉 exists
0 otherwise

The simplest definition of f, which represents the similarity be-
tween any two objects is f(xip, xjq) = 1, resulting in a binary
weighted, undirected graph. Classification algorithms use a variety
of similarity metrics, such as co-occurrence, lift, cosine similarity,
correlation, and others. We define f in our framework to be:

f(xip, xjq) =

{
Cor(xip, xjq) if p < 0.05
0 otherwise (1)

Here, p is the p-value for the hypothesis that the association be-
tween xip and xjq is not equal to 0. Filtering using the p value
is necessary, since a weak correlation would only introduce noise
into our network, without contributing much additional informa-
tion. We also keep the relation graph undirected, so that Rij = RT

ji.

2.1.3 Graph-Based Ranking
Having appropriately defined the nodes, edges, and edge weights

for our heterogeneous information network G, we are able to di-
rectly follow the graph-based ranking method in [5]. The input to
the method is a heterogeneous network with a star schema, such
as we have defined. The algorithm iterates over classifying the ads
and features, and ranking features within each class, while respect-
ing the differences between feature types (i.e., geolocation features
and browsing-history features would not be directly compared).
The output is a class distribution for each node, representing the
probability of a node’s membership within each class, and a rank-
ing distribution, representing the node’s rank, with respect to other
nodes of the same type, within each class.

For our purposes, it is important to note that the graph-based
ranking method also defines a set of weights λi, i ∈ [1,m], where
each λi represents the relative importance of node type i. This is
valuable for our problem space, since it allows for different types
of features to naturally contribute more or less to the model (e.g.,
customer-defined features may be of a high quality, and should be
trusted more than automatically acquired features.) The values of
λ may be defined by a user, or learned using some information
criterion such as BIC.

2.2 Classifier Construction
The final step is to use the converged ranking distributions to

construct a classifier. In this heterogeneous data framework, it is
not clear how to combine ranking scores from feature objects of
different types. For instance, if feature type Xi has many more fea-
tures than feature type Xj , the highest ranked feature object of type



Xi in class k is almost certain to have a much lower ranking score
than the highest ranked feature object of type Xj in class k. Sim-
ilarly, the differences in rank scores cannot be compared between
the different feature type, since the difference in rank score between
the top two objects of type Xj may be larger than the difference in
rank score between the top 10 objects of type Xi. It is therefore
not reasonable to use each object’s ranking score as its classifier
score, (and a similar problem exists with using each object’s poste-
rior probability of which class it belongs to).

A good alternative is to transform the ranking distributions into
inverse ranks, with respect to feature type and k. The inverse rank
of each object xip of feature type Xi within class k is simply cal-
culated as 1

Rank(xip|Xi,k)
where Rank(xip|Xi, k) = 1 if xip is the

top-ranked object among the objects of feature type Xi within class
k; Rank(xip|Xi, k) = 2 if xip is the second-ranked object; etc.

Recall that the weight λi1 represents the information value of the
feature type Xi (where i 6= 1). Therefore, the classifier score for
object xip of feature type Xi within class k is calculated as:

Score(xip) =
1

Rank(xip|Xi, k)
∗ λi1 (2)

This scoring schema does not require explicit feature object fil-
tering, which could involve tuning multiple parameters for each
feature type, and is therefore undesirable. Instead, the few top-
ranked feature objects within each feature type generally determine
the scoring for each class k in a natural way, resulting in an en-
semble approach to scoring and classifying a new record. As this
scoring schema is a ‘positional’ method [4] it has the advantage of
being scalable, since it may be implemented in linear time.

In order to score a record, the classifier simply treats all of the
classifier scores of the feature objects for a given class k as a vec-
tor, and performs element-wise multiplication between this scoring
vector and the new record (lining up feature names, of course). The
sum of the result is then treated as the score for the record for class
k. This process is repeated K times until the record has a score
vector of length K, representing the classifier’s recommendation
for each label. The recommended label is thus the one which cor-
responds to the highest score.

3. EXPERIMENTAL RESULTS
We implement our framework in R and experiment using a real

world digital marketing dataset. We compare with several well-
known approaches: Random Forest (RF) [1], Generalized Linear
Model (GLM)[8], and Support Vector Machine (SVM) [3].1

3.1 Dataset Preprocessing
We obtained a marketing campaign dataset from a large, consumer-

oriented manufacturing company, in order to conduct our exper-
iments. The dataset consists of records from a ten-week period,
from Jul 2nd to Aug 17th of 2012, with a marketing campaign con-
sisting of 7 different ads and no positional bias [2], where every ad
was shown in the same location. Each record in the dataset consists
of user feature variables, the ad serving selection (which one of
seven ads was served), and binary clickthrough information, which
labels the record as being positive of negative.

An existing proprietary ad serving mechanism served 90% of
the records. The mechanism also incorporates a random bucket to

1 We use the R package randomForest (available at http://cran.r-
project.org/web/packages/randomForest/index.html), the base R system
function glm(), and the R package e1071 (available at http://cran.r-
project.org/web/packages/e1071/index.html) which interfaces with libsvm
(available at http://www.csie.ntu.edu.tw/ cjlin/libsvm/.)

collect exploration clicks from 10% of traffic. We use this 10%
randomly served dataset as testing data. We sampled records from
the other 90% of the data to construct a subset with a uniform
distribution of ad recommendations, which we use as our training
dataset. As a result, our dataset consists of 84,035 training records
and 13,434 testing records.

The dataset contains two types of features: continuous features,
which are numeric and may be any value, and nominal, or cate-
gorical features, which are non-numeric (e.g. a geolocation vari-
able.) We apply simple pre-processing on the dataset in order to
prepare it for the classifiers. The pre-processing is based purely on
feature frequency, instead of other more sophisticated information-
theoretic measures, as simple, frequency-based metrics tend to em-
pirically work better for sparse, noisy data. First, we discard all
features which have only missing or null values, or which take on
only one value. Next, we categorize each feature into 10 categories
(B = 10), a commonly used technique. For continuous features,
we run k-means clustering to find 10 buckets for the continuous val-
ues. For nominal features, we identify the 10 most common values,
assign an id to each value, and drop the infrequent values.

The features in this dataset naturally split into 11 different cat-
egories. Some features represent automatically gathered informa-
tion, such as geolocation. Other features represent various types of
targeting or segmentation information constructed by the client. In-
corporating this additional semantic knowledge results in the iden-
tification of reasonable feature types, and this information bolsters
both the performance of IGM, and the interpretability of the con-
structed model. Due to the nature of our dataset, there were very
few users who appeared multiple times. Therefore, we make the
simplifying assumption that each record corresponds to a unique
user, and do not consider user information in this work.

3.2 Evaluation Methodology
We next wish to evaluate whether our selected features are high

quality, and would be useful in choosing which ad to serve in or-
der to maximize CTR. We follow the offline evaluation process de-
scribed in [7], since we do not have the kind of supervised setting
common in traditional machine learning problems.

For each algorithm we choose a subset of records from the evalu-
ation set, as follows: for each record, if the served advertisement is
precisely the one that the given algorithm would choose (because
that label had the highest score), we retain that record; otherwise
we discard it. Given K possible ads to choose from, each record
- which made a random choice of ad - is therefore retained with a
probability of 1/K, independent of everything else. Therefore, for a
sufficiently large initial evaluation set we are able to extract a sub-
set that can act as a fairly reliable proxy for an evaluation of the
algorithm performance on live data.

When evaluating each algorithm’s ability to label the testing
dataset, it is also necessary to allow the label option of “0”, in ad-
dition to the existing options of 1 : K. The “0” label is interpreted
as the algorithm’s claim that since there is no label for this record
with a high enough score, there will be no click, regardless of which
label is recommended (this user will not click on anything).

3.3 Evaluation
It is important to note that datasets derived from clickstreams

will nearly always be very unbalanced, exhibiting mostly negative
labels, with few positive labels. The goals of classifiers in this
problem space must also be carefully considered, weighing the im-
portance of correctly predicting many labels versus minimizing the
number of prediction errors. We would argue that of the four base
confusion matrix metrics, it is most important to a) increase the



Table 1: Performance metrics: GLM, RF, SVM, IGM

Performance Metric GLM RF SVM IGM
Precision 0.514 0.471 0.318 0.304
Recall 0.247 0.546 0.798 0.704
Specificity 0.930 0.821 0.491 0.553
F1 Measure 0.334 0.506 0.455 0.424
F2 Measure 0.276 0.529 0.613 0.557

Table 2: Case Study Scenarios

Performance Metric Original CC AA
Precision 0.304 0.300 0.311
Recall (Sensitivity) 0.704 0.703 0.684
Specificity 0.553 0.550 0.559

ability to correctly identify true positives, implying that the classi-
fier interpreted the new record; and b) to decrease the predictions of
false negatives, which imply that the classifier incorrectly thought
the user would not click any ad, and therefore missed some impor-
tant information.

On the other hand, every user must be served some ad, even if
the classifier believes the user will not click any ad. Therefore, if
the classifier predicts a false positive, there is no real problem since
an ad is served, and the model will learn something for next time.
And of course, if the classifier correctly predicts a true negative, it
is likely that some other ad serving mechanism will be used (serve a
random ad, serve an ad proportional to its CTR in the past, etc.), and
the classifier will be validated as not having missed some important
information. The conclusion to draw from these examples is that
we should particularly value the Recall metric (TP/P), since this
metric improves both when true positives are increased, and when
false negatives are decreased. Thus, we are interested in the F2

measure as a proxy for the intuition that Recall is somewhat more
important than Precision.

Table 1 suggests that IGM performs somewhat comparably to
SVM, on the presented metrics - IGM is somewhat better for Speci-
ficity, and slightly worse for everything else. GLM and RF perform
well, especially on Precision and Specificity, but are definitely be-
low SVM and IGM on Recall, and consequently on the F2 measure.

For example, we note that GLM has a very low Recall value
of 0.247. Roughly, this means that for every positively labeled
record that GLM correctly predicts as positive, there will be 3 pos-
itively labeled records that GLM incorrectly predicts to be nega-
tive. GLM’s Specificity value also reflects that GLM is very good
at predicting negatives, but we do not value this ability as highly.
Random Forest also suffers from a low Recall value, though not to
the same degree as GLM.

We would argue that SVM and IGM are the best performing al-
gorithms for the task of targeted ad serving compared to RF and
GLM, specially for this marketing campaign. However, IGM has
the capacity to provide the transparency to explore and interpret the
reasons behind the classification. The ranking distributions con-
tain all of the information ruling the classifier, and are easily inter-
pretable. If a given feature is highly ranked within its feature type
and for a given class, then this means that seeing that feature is a
strong indicator for that class. We could therefore observe, for ex-
ample, the rule that if a record’s city is identified to be Seattle, the
user is more likely to respond to ad 3 - which turns out to be an ad
for umbrellas. Such detailed observations are a little complicated to
identify in black-box algorithms such as SVM, where parameters
of a solved model are difficult to interpret.

3.4 Case Study
As a toy simulation of incorporating real-world knowledge, we

present two cases of explicitly choosing the values of λ for specific
feature types. Using just two values, λhigh = 0.2 and λlow =
0.02, we use our knowledge of the dataset split the feature types
into automatically acquired (AA) features , and customer-created
(CC) features. We then consider two scenarios. In the CC sce-
nario, we assume that the customer is very savvy, and that the CC
features should do better than the AA features. We set λ = λhigh

for all CC features, and λ = λlow for all AA features. In the AA
scenario, we instead assume the customer constructs very useless
features, and reverse the λ assignments. As seen Table 2 if our
goal is to maximize recall, the CC scenario performs just as well
as the default scenario, whereas the AA scenario yields a slightly
poorer performance. We might therefore suggest that in the case of
this dataset, if the goal is to maximize recall, the customer-created
features should be considered to be more informative.

4. CONCLUSION
The goal of marketing professionals is to run successful online

marketing campaigns. An important aspect of this goal is being
able to interpret why marketing campaigns were (or were not) suc-
cessful, in order to better understand customers’ behavior. The
IGM model provides both a classifier function, and a feature rank-
ing for each feature type, which can be used to discover the fea-
tures that the model found to be most informative (e.g., which ge-
olocation features were informative? What about features related to
browser history?). It is therefore possible to generate insight reports
about online visitors’ behavior information and targeting rules.

Going further in this direction, we would like to study IGM’s ef-
fectiveness on additional real world datasets. We also want to study
more about how the flexibility of model can be helpful with real-
world use cases as IGM can easily incorporate domain knowledge
such as the relative importance of different feature types.
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