
Large-Scale Spectral Clustering on Graphs

Jialu Liu Chi Wang Marina Danilevsky Jiawei Han
University of Illinois at Urbana-Champaign, Urbana, IL
{jliu64, chiwang1, danilev1, hanj}@illinois.edu

Abstract

Graph clustering has received growing attention in
recent years as an important analytical technique,
both due to the prevalence of graph data, and the
usefulness of graph structures for exploiting intrin-
sic data characteristics. However, as graph data
grows in scale, it becomes increasingly more chal-
lenging to identify clusters. In this paper we pro-
pose an efficient clustering algorithm for large-
scale graph data using spectral methods. The key
idea is to repeatedly generate a small number of
“supernodes” connected to the regular nodes, in or-
der to compress the original graph into a sparse
bipartite graph. By clustering the bipartite graph
using spectral methods, we are able to greatly im-
prove efficiency without losing considerable clus-
tering power. Extensive experiments show the ef-
fectiveness and efficiency of our approach.

1 Introduction
Graph data composed of large numbers of data objects inter-
connected with each other via meaningful relationships, has
become increasingly prominent in real life. Examples include
friendship graphs in Facebook, web pages connected by hy-
perlinks, and co-author graphs in bibliographic data. In many
other machine learning applications, pairwise similarities be-
tween data objects can be modeled using a graph, and the sub-
sequent problem of data clustering can be viewed as a graph
clustering problem.

Graph clustering aims to partition the nodes into densely
connected subgraphs such that nodes within the same cluster
have more connections than those in different clusters. Dis-
covering clusters in graph not only helps to visualize and de-
fine hierarchies [Herman et al., 2000], but is also meaning-
ful for many real world problems, such as community detec-
tion [Fortunato, 2010; Smyth and White, 2005] and outlier
detection [Gupta et al., 2012]. In addition, clustering results
can be used as building blocks for many other algorithms
to reduce graph and model complexity [Song et al., 2008;
Dalvi et al., 2008]. Using and interpreting such methods
without some form of summarization becomes difficult as
graphs grow in size. However, actually discovering clusters

becomes quite challenging as graphs balloon in size, a com-
mon phenomenon in today’s era of “big data.” Thus, there is
a pressing need to develop efficient and effective clustering
algorithms that can be adapted for large-scale graphs.

In this paper, we propose such an algorithm using spec-
tral methods, which have been widely used for effective
graph clustering [Shi and Malik, 1997]. Many previous stud-
ies have examined accelerating spectral clustering. Most of
these [Shinnou and Sasaki, 2008; Yan et al., 2009; Sakai and
Imiya, 2009; Chen and Cai, 2011] have been devoted to data
represented in a feature space instead of a graph. Other ap-
proaches are designed to achieve efficiency by finding nu-
merical approximations to eigenfunction problems [Fowlkes
et al., 2004; Chen et al., 2006; Liu et al., 2007] or adapting
standard eigensolvers to distributed architecture [Chen et al.,
2011; Miao et al., 2008]. In contrast, we aim to mitigate the
computational bottleneck by reducing the size of the graph,
while still providing high-quality clustering results, as com-
pared to standard spectral methods. Specifically, we gener-
ate meaningful supernodes which are connected to the orig-
inal graph. Correspondingly, we obtain a bipartite structure
which preserves the links between original graph nodes and
the new supernodes. In this representation, we expect these
supernodes to behave as cluster indicators that may guide the
clustering of nodes in the original graph. Furthermore, the
supernode clustering and regular node clustering should mu-
tually help induce each other. In this way, the clustering of
the original graph can be solved by clustering the bipartite
graph. By controlling the number of supernodes and enforc-
ing the sparsity of the generated bipartite graph, we are able
to efficiently achieve this goal.

It is worthwhile to highlight several key aspects of the pro-
posed approach:

1. As far as we know, this is the first exploration of a
large-scale graph clustering algorithm which uses spec-
tral methods on a transformation of the graph structure.
The proposed design greatly reduces time requirements
without considerably impacting performance.

2. Our method scales well. Most of the computations are
simple matrix multiplications and thus can be easily
implemented and efficiently processed in distributed or
multi-core architecture.

3. We propose two alternative approaches in this paper.
The first uses a one-step generation of supernodes, and

the second adopts an iterative framework to regenerate
supernodes based on the clustering result obtained from
the previous step.

2 Related Work
The general spectral clustering method [Ng et al., 2001;
Shi and Malik, 1997] was first shown to work on data repre-
sented in feature space. As we are mainly interested in graph
data, we need one more step to construct an adjacency matrix
which takes O(n2p) time where n and p represent number of
data points and features respectively. Calculating the eigen-
decomposition of the corresponding Laplacian matrix is the
real computational bottleneck, requiring O(n3) time in the
worst case. Therefore, applying spectral clustering for large-
scale data becomes impossible for many applications. In re-
cent years, many works have been devoted to accelerating the
spectral clustering algorithm.

Among them, [Fowlkes et al., 2004] adopts the clas-
sical Nyström method, which was originally proposed to
find numerical approximations to eigenfunction problems.
It chooses samples randomly to obtain small-size eigenvec-
tors and then extrapolates these solutions. [Shinnou and
Sasaki, 2008] reduces the original data set to a relatively
small size before running spectral clustering. Similar to
this idea, in [Yan et al., 2009], all data points are collapsed
into centroids through k-means or random projection trees
so that eigen-decomposition only needs to be applied on the
centroids. [Sakai and Imiya, 2009] uses random projec-
tion in order to reduce data dimensionality. Random sam-
pling has also been applied to reduce the size of data points
within the eigen-decomposition step. [Chen et al., 2006;
Liu et al., 2007] introduce early stop strategies to speed
up eigen-decomposition based on the observation that well-
separated data points will converge to the final embedding
more quickly. In [Chen and Cai, 2011], landmark points are
first selected among all the data points to serve as a codebook.
After encoding all data points based on this codebook, accel-
eration can be achieved using the new representation. The
authors in [Khoa and Chawla, 2012] work on resistance dis-
tance embedding, which employs a similar idea to spectral
clustering and exhibits comparable clustering capability.

3 Revisiting Spectral Clustering
In this section, we briefly introduce the spectral clustering
algorithm [Shi and Malik, 1997; Ng et al., 2001]. Sup-
pose that we are given an undirected and weighted graph
G = (V,E). Assume |V | = n represents the number of
nodes and |E| = m represents the number of edges or links1.
We can then use a non-negative weighted n × n adjacency
matrix W to describe G, where W = {Wij}i,j=1,...,n. Based
on W , the Laplacian matrix L is defined as follows:

L = D −W
where D is a diagonal matrix whose entries are column (or
row, since W is symmetric) sums of W . Based on this Lapla-
cian matrix, spectral clustering aims to find k orthonormal

1In the following sections, edges and links are used interchange-
ably.

column vectors X1, X2, . . . , Xk with the objective function:

min
X

Tr(XTD−1/2LD−1/2X) s.t. XTX = I

whereX ∈ Rn×k is a matrix consisting of the column vectors
and k is the number of clusters.

It turns out that these vectors are indeed the eigenvectors
corresponding to the k smallest eigenvalues obtained from the
eigen-decomposition (EVD) on D−1/2LD−1/2. After row
normalization of these eigenvectors, one can apply any clas-
sical clustering algorithm such as k-means to partition these
low-dimensional embeddings. It is worth noting that the com-
plexity of EVD on an n × n graph is O(n3) without consid-
ering the sparsity or calculating limited pairs of eigenvalues
and eigenvectors.

4 Large-Scale Spectral Clustering on Graphs
Now we introduce our Efficient Spectral Clustering on
Graphs (ESCG) for large-scale graph data. The basic idea
of our approach is designing an efficient way to coarsen the
graph by generating supernodes linked to the nodes in the
original graph. A bipartite graph between nodes in G and
generated supernodes is then constructed to replaceG, so that
the original high-dimensional EVD can be avoided.

4.1 Generation of Supernodes
Given the initial graph G of n nodes, we want to generate a
set of d supernodes to coarsen the graph under the condition
that d � n. Inspired by the intuition behind simultaneous
or co-clustering [Dhillon, 2001], which says that clustering
results of two related object types can be mutually enhanced,
we expect that a partition of supernodes can induce a parti-
tion of the observed nodes, while a partition of the observed
nodes can imply a partition of supernodes. Therefore, we first
develop a simple and efficient algorithm to establish an initial
clustering on graph G. Then we generate supernodes based
on this initial clustering.

Our proposed approach works as follows: given the graph
G, we randomly pick d seeds in the graph and compute short-
est paths from these seeds to the rest of the nodes. We then
partition all the nodes into d disjoint subsets represented by
the seeds: each node chooses the representative seed with the
shortest distance.

To solve the shortest path problem, we first transform the
edge weight demonstrating the similarity into distance:

Mij = − log
Wij

maxW
+ ε

where ε is a very small number that functions as the addi-
tional decay along the path. We incorporate the decay in or-
der to prevent the possible distance between two nodes from
being 0. The logarithmic transformation is adopted because
the summation of Mij’s along the paths in the graph can
be viewed as the multiplication of the edge weights, which
makes sense for estimating the distance for any pair of nodes.

After this step, the range of the distance value on each
edge should be within [ε,+∞). Dijkstra’s algorithm is then
adopted to compute the shortest paths from seeds to the rest
of the graph, which takes O(md+ nd log n) time.

After running Dijkstra’s algorithm, we are able to parti-
tion all nodes in G into d disjoint subsets by comparing their
shortest paths to the seeds. We assign each node to the par-
tition with the closest seed. Note that this step can be imple-
mented in parallel.

Given these d disjoint subsets, d supernodes in total are
assigned accordingly. The linkage between supernodes and
regular nodes inG is described by a binary matrixR ∈ Rd×n.
Each element in R is set to be 1 if there is a link between
supernode and regular node. It should be noted that R is also
a sparse matrix whose Frobenius norm is equal to

√
n. At this

point, we know thatR contains the edges between supernodes
and regular nodes while W describes the edges within G. We
therefore absorb W into R to finish transforming G into the
bipartite graph. In a bipartite graph, the nodes can be divided
into two disjoint groups, such that edges only exist between
nodes in different groups. Denote the associated edge weight
matrix Ŵ ∈ Rd×n of the bipartite graph is as follows:

Ŵ = RW. (1)
The design of this step can also be explained with the fact

that R is essentially a one-to-many bipartite graph while Ŵ
is a many-to-many graph. Only in the latter case is each su-
pernode related to many regular nodes and vice versa. Obvi-
ously, this many-to-many relationship can be further modeled
to achieve the goal mentioned at the beginning of this subsec-
tion, i.e., to propagate clustering information between nodes
located on both sides of the bipartite graph. It is also worth
noting that in order to obtain better clustering power, intu-
itively d should be set larger so that the information loss in
going to Ŵ from W is smaller.

4.2 Spectral Clustering on Reduced Graphs
Through the transformation to the bipartite graph, we sig-
nificantly reduce the size of the full edge weight matrix of
G from n × n to d × n. In this section, we introduce
how to convert the EVD of the graph Laplacian mentioned
in the previous section into a singular value decomposition
(SVD) problem, such that the overall time complexity is
O(md + nd log n + nd2), which is a significant reduction
from O(n3) since d� n.

To begin, we give the adjacency matrix of the bipartite
graph described above:

W ′ =

[
0 ŴT

Ŵ 0

]
.

Here, we use the “prime” notation to denote the adjacency
matrix, which is a square matrix of size (n + d) × (n + d).
Hence we also have representations for L′ and D′ in this bi-
partite model:

L′ =

[
D1 −ŴT

−Ŵ D2

]
, and D′ =

[
D1 0
0 D2

]
where D1 and D2 are two diagonal matrices whose entries
are column and row sums of Ŵ , respectively.

The generalized eigen-decomposition (GEVD) of L′ and
D′ can be written as[

D1 −ŴT

−Ŵ D2

] [
u
v

]
= λ

[
D1 0
0 D2

] [
u
v

]
. (2)

Algorithm 1 Efficient Spectral Clustering on Graphs (ESCG)
Input: Adjacency matrix W ∈ Rn×n for graph G, number

of clusters k, desired number of supernodes d
Output: Clustering of nodes in G

1: Randomly sample d seeds and apply Dijkstra’s algorithm
to compute shortest paths.

2: Partition nodes into d disjoint subsets with shortest paths.
3: Generate d supernodes and build their connections to d

disjoint subsets respectively with matrix R ∈ Rd×n.
4: Compute matrix Ŵ indicating the adjacency for the

transformed bipartite graph by Eq. 1.
5: Compute Z = D

−1/2
2 ŴD

−1/2
1 where D1 and D2 are

diagonal matrices of column and row sums of Ŵ .
6: Obtain the largest k eigenvalues and corresponding

eigenvectors from ZZT .
7: Generate right singular vectors X of Z as in Eq. 4 .
8: Form the matrix U = D

−1/2
1 X .

9: Treat each row ofU as a node in Rk, partition these nodes
into k clusters via k-means algorithm.

Under the representation of x = D
1/2
1 u and y = D

1/2
2 v,

Eq. 2 becomes

D
−1/2
2 ŴD

−1/2
1 x = (1− λ)y

D
−1/2
1 ŴTD

−1/2
2 y = (1− λ)x.

For convenience, we use Z to denote D−1/22 ŴD
−1/2
1 and

the relationship between x and y is then seen more clearly:

Zx = (1− λ)y, ZT y = (1− λ)x. (3)

It is easy to verify that x retains the clustering information
of original nodes in G, and y retains that of the supernodes,
which are inherited from u and v, respectively. Therefore,
Eq. 3 justifies the intuition that the partitions of the origi-
nal nodes and those of the supernodes can induce each other
through linear operations. In fact, x and y are mutually af-
fected by Z, which is essentially a normalized edge weight
matrix between the original nodes and the supernodes. How-
ever, x and y do not directly indicate the cluster membership
of each node in the bipartite graph since they themselves are
normalizations of u and v where u and v are real relaxations
into discrete partitions, as in spectral clustering.

In addition, Eq. 3 demonstrates that x and y are the left
and right singular vectors corresponding to the largest sin-
gular values of Z. Thus, the GEVD of L′ and D′ that was
previously mentioned is not necessary to save computation
time. Note that the size of D−1/22 ŴD

−1/2
1 remains the same

as Ŵ , i.e., d × n. Thus, a better way to compute x is to first
estimate y because d is much smaller than n,.

Denote the SVD of Z as follows:

Z = Y ΣXT

where Σ = Diag(σ1, σ2, · · · , σd) and Y ∈ Rd×d (X ∈
Rn×d) are left (right) singular vectors. Moreover, X and Y
are two matrices formed by pairs of column vectors x and
y satisfying Eq. 3. It is easy to check that the left singular

Algorithm 2 Regeneration of Supernodes
Input: Embedding matrix U ∈ Rn×k
Output: Sparse matrix R describing the links between su-

pernodes and regular nodes in G
1: Initialize a sparse matrix R ∈ R(2k−2)×n.
2: for i = 2 to k do
3: Compute mean U ·,i of vector U·,i.
4: Set R2×i−3,j to 1 if Uj,i ≤ U ·,i for all j ∈ 1, · · · , n.
5: Set R2×i−2,j to 1 if Uj,i > U ·,i for all j ∈ 1, · · · , n.
6: end for

vectors of Z are exactly the eigenvectors of ZZT and the
corresponding eigenvalues are σ2

1 , σ
2
2 , · · · , σ2

d. Thus, by per-
forming eigen-decomposition of ZZT , we can directly obtain
Y and Σ2. As these singular values are all nonnegative real
numbers and Y is an unitary matrix, we can getX as follows:

XT = Σ−1Y TZ (4)

As the final step, k-means is usually adopted to cluster the
“top” k column vectors of normalized X . Other clustering
approaches such as hierarchical k-means or approximate k-
means may also be used to achieve better efficiency. Alg. 1
summarizes the algorithm of Efficient Spectral Clustering on
Graphs (ESCG). Note that in order to obtain k column vec-
tors from SVD, the number of supernodes should be at least
k to ensure that the rank of matrix Z is large enough.

4.3 Regeneration of Supernodes
In the aforementioned approach, supernodes are connected
to regular nodes according to the shortest paths to randomly
selected seeds. The supernodes thus behave like cluster indi-
cators responsible for propagating knowledge of the original
graph. However, once we get the clustering result using spec-
tral techniques discussed above, we may use this knowledge
to form non-random supernodes and improve the final results.

We therefore propose an iterative way to regenerate the su-
pernodes based on the current clustering results, aiming to
repeatedly improve the clustering. In particular, it is natural
to require each supernode to link to a set of densely connected
nodes, which themselves form a better local cluster than the
random sampling method discussed in Sec. 4.1. Also the pro-
cess of discovering such local clusters must be efficient. In-
spired by the fact that the column vectors of the embedding
matrix U can be used to indicate partitions of nodes in the
graph [Shi and Malik, 1997], supernodes can be guided to
connect to nodes which form local clusters that are inferred
from the element values in the column vectors of U .

In our approach, we generate (2k− 2) supernodes in total,
corresponding to the right k − 1 columns of the embeddings
(the leftmost column is ignored since it contains constant el-
ements.) For details please refer to Alg. 2, where we assume
the first column vector to be filtered, for simplicity.

Alg. 3 gives the procedure of Efficient Spectral Clustering
on Graphs with Regeneration (ESCG-R).

4.4 Computational Complexity Analysis
For ESCG, the supernodes generation step (lines 1-4 in
Alg. 1) takes O(m(d + 1) + nd log n) time, as it is simply

Algorithm 3 Efficient Spectral Clustering on Graphs with
Regeneration (ESCG-R)
Input: Adjacency matrix W ∈ Rn×n for graph G, number

of clusters k, desired number of supernodes d, number of
iterations t

Output: Clustering of nodes in G
1: for i = 1 to t do
2: if i = 1 then
3: Create matrix R ∈ Rd×n as in Alg. 1 (lines 1 - 4).
4: else
5: Create matrix R ∈ R(2k−2)×n as in Alg. 2 .
6: end if
7: Same with lines 4-8 as in Alg. 1.
8: end for
9: Treat each row ofU as a node in Rk, partition these nodes

into k clusters via k-means algorithm.

a combination of Dijkstra’s algorithm and a matrix multipli-
cation operation. ESCG then needs O(nd) time to compute
Z and O(nd2) time for ZZT . The EVD step2 of ZZT (line
6) has time complexity O(d3), and obtaining the right sin-
gular vectors X takes O(ndk) time. Summing these gives
O(m(d+1)+nd log n+nd+nd2+d3+ndk). Since d� n
and k ≤ d, we can preserve just the dominant components,
yielding a total complexity of O(md+ nd log n+ nd2).

Compared to ESCG, the main difference in ESCG-R is
that the number for supernodes in later iterations (line 5) de-
creases from d to 2k − 2. The complexity of this step is
O(mk). As the loop (lines 1 to 8) takes t iterations, the total
time complexity is O(md+ nd log n+mkt+ n(d2 + k2t)).

5 Experiments
In this section we present several experiments to show the
effectiveness of our proposed approach. We begin with the
description of the data sets used in our experiment.

5.1 Data Sets
Two synthetic data sets and two real world data sets are used
in our experiments. The important statistics of these data sets
are summarized below (see also Table 1):

• Syn-1K is a synthetic data set generated from k-NN
graph of three circles similar to Fig. 1 (a) and (b).
• Syn-100K is a synthetic data set generated according to

[Brandes et al., 2003] where each node has about 40 out-
cluster and 120 within-cluster neighbors.
• DBLP is a collection of bibliographic information on

major computer science journals and proceedings3. We
use a subset of the DBLP records that belong to four
areas: artificial intelligence, information retrieval, data
mining and database. We generate a graph of authors
linked by the co-conference relationship.
• IMDB is an international organization whose objective

is to provide useful and up to date movie information4.
We create a graph of movies linked by the co-director

2We consider EVD using QR decomposition for simplicity.
3http://www.informatik.uni-trier.de/ ley/db/
4http://www.imdb.com/

relationship. The genre information is considered to be
the clustering label. We use four genres: documentary,
music, comedy and adult.

Table 1: Statistics of the four data sets
data set nodes edges clusters sparsity
Syn-1K 1,000 10,000 3 0.01

Syn-100K 100,000 8.2M 10 0.0016
DBLP 28,702 62.4M 4 0.1515
IMDB 30,731 257K 4 5 ×10−4

5.2 Algorithms for Comparison
To demonstrate the effectiveness and efficiency of our
method, we compared with the following clustering algo-
rithms which can be applied to graph data directly:

• Shortest Paths (SP) algorithm. To show our method can
significantly improve the clustering result from the ini-
tial partition obtained from shortest path algorithm, we
report its performance by selecting k random seeds.
• Efficient Spectral Clustering on Graphs (ESCG), the

method proposed in this paper. There is one parame-
ter in the ESCG algorithm: the number of supernodes
d. In our experiments, we empirically set it to 30. The
model selection is discussed in the Section 5.6.
• Efficient Spectral Clustering on Graphs with Regenera-

tion (ESCG-R), the second method proposed in this pa-
per, which regenerates supernodes. The number of iter-
ations is empirically set to be 5 and related experiments
can be found in the Section 5.6.
• Standard Spectral clustering (SC) algorithm. We imple-

mented the algorithm in [Ng et al., 2001].
• Resistance Embedding Spectral Clustering (RESC)

from [Khoa and Chawla, 2012], an efficient spectral
clustering method that can be applied to graph data. We
implement the algorithm and set the parameter KRP to
be 50 as suggested by the authors.
• Nyström [Fowlkes et al., 2004], a method that aims to

find numerical approximations to eigenfunction prob-
lems. We use the Matlab implementation online5.

In order to randomize the experiments, we conduct 20 test
runs with different random initializations and report the aver-
age performance.

5.3 Evaluation Metric
The clustering result is evaluated by comparing the obtained
label of each sample using clustering algorithms with that
provided by the data set. The accuracy metric (AC) [Chen
and Cai, 2011] is used to measure the performance.

We also report the running time of each method. All coding
was implemented in MATLAB R2011b and run on a desktop
with Intel Core I7 2600 and 16GB memory.

5.4 Experimental Results
Table 2 shows the clustering performance of the different al-
gorithms on all four data sets. We can see that ESCG al-
ways outperforms SP - which is in fact a module of ESCG

5http://alumni.cs.ucsb.edu/∼wychen/

Table 2: Clustering accuracy on the four data sets (%)
Data sets Syn-1K Syn-100K DBLP IMDB

SP 73.6 37.6 58.0 46.3
ESCG 100 97.0 70.6 49.5

ESCG-R 100 100 82.1 51.8
SC 100 100 78.2 55.2

RESC 100 10.6 27.9 58.2
Nyström 40.0 17.1 78.4 40.1

Table 3: Running time on the four data sets (s)
Data sets Syn-1K Syn-100K DBLP IMDB

SP 0.001 0.33 1.72 0.02
ESCG 0.023 1.36 3.81 0.17

ESCG-R 0.041 7.38 9.23 0.49
SC 0.228 5.06 27.7 74.4

RESC 0.166 201 2394 24.9
Nyström 0.033 19.1 3.89 4.41

for generating supernodes. ESCG-R achieves better perfor-
mance than ESCG since the process of regenerating supern-
odes based on the embeddings of ESCG makes use of more
knowledge from the original graph.

On the Syn-1K data set, since the k-NN graph is relatively
clean, ESCG, ESCG-R, SC and RESC all achieve 100% ac-
curacy. Despite SP’s significant efficiency, its accuracy is
only 73.6% which is 26.4% less than all other methods. Al-
though both ESCG and ESCG-R use SP to generate supern-
odes, they both significantly improve on SP’s performance in
the clustering task. Nyström performs poorly on this data set
since Syn-1K is sparse and finding approximations of eigen-
decomposition using the sampling technique on a sparse ma-
trix is very difficult. To further study this data set, we add
noise into the graph, as visualized in Fig. 1 (a) and (b). The re-
sults of our proposed methods and other algorithms are shown
in Fig. 1 (c) to (h). Based on the initial clustering from short-
est path calculations, ESCG significantly refines the result
and ESCG-R further improves performance.

On the Syn-100K data set, SP is surprisingly unable to find
a good partition on the graph, and only achieves 37.6% in
terms of accuracy. This is due to the fact that each node has 40
out-cluster links and in this case, shortest path length may not
be a good feature for clustering. However, ESCG is still able
to achieves 97% accuracy, again demonstrating its effective-
ness over SP. With regeneration of supernodes, ESCG-R fi-
nally reaches 100% accuracy, the same as SC. It is worth not-
ing that RESC performs on the level of random guessing on
this data set. This may be due to the random projection step
within the algorithm since too many edges are intra-cluster.
Nyström once again performs poorly due to graph sparsity.

On the DBLP data set, ESCG-R achieves the best perfor-
mance, beating the second best Nyström by 3.9%. Nyström
shows its power on the DBLP data set because this graph is
much more dense. RESC posts a similarly poor performance
on this data set as on the Syn-100K data set.

On the IMDB data set, all algorithms are relatively close.
Among them, RESC has 58.2% accuracy and SC has 55.2%.
Our proposed ESCG and ESCG-R perform a little worse,
with accuracies of 49.5% and 51.8%, respectively. Due to

 (a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Toy example on the synthetic data set Syn-1K. Top 4 figures, from left to right: (a) ground-truth partition; (b) k-NN
graph; (c) initial clustering results by shortest path, when d = 10; (d) clustering results by ESCG. Bottom 4 figures, from left
to right: clustering results by (e) ESCG-R after 5 iterations; (f) spectral clustering; (g) RESC; (h) Nyström method.

0 50 100 150 200 250 300

20

40

60

80

100

d

A
cc

ur
ac

y(
%

)

DBLP

SP
ESCG
ESCG−R
SC
Resc
Nystrom

Figure 2: Performance of ESCG/ESCG-R w.r.t. parameter d.

the graph sparseness, Nyström only shows 40.1% accuracy,
nearly 20% lower than the best.

In conclusion, we find that all the scalable clustering meth-
ods in our experiment including ours cannot always beat SC,
demonstrating its strength and stability. However, our pro-
posed methods, ESCG and ESCG-R, are relatively stable and
effective, outperforming other efficient algorithms.

5.5 Complexity Study
Table 3 lists the running time for different algorithms on all
four data sets. For the convenience of testing, we do not in-
corporate the running time for k-means because this step is
shared by all of the algorithms except SP. As shown in the
table, ESCG takes the least amount of time to obtain the em-
beddings with the exception of SP, which is essentially one
module in our algorithm. When the graph is dense, we note
that RESC becomes extremely slow since it needs to construct
a diagonal matrix of all edges and to apply random projec-
tion and some additional operations on the matrix. ESCG-R
adopts an iterative framework and therefore should always
take more time than ESCG. However, due to the small size
of the regenerated supernodes, the time complexity does not
increase much, as demonstrated in the table.

5.6 Parameter Study
In this subsection, we study the parameters d and t in our pro-
posed algorithms. As shown in Fig. 2, in order to obtain better

Iteration #
A

c
c
u

ra
c
y
(%

)

2 4 6 8 10
98

99

100

2 4 6 8 10

96

98

100

2 4 6 8 10
70

75

80

2 4 6 8 10

47

50

53

Figure 3: ESCG-R w.r.t. # iteration on the four data sets.

clustering power, d should be set a bit larger than k so that the
information loss of Ŵ fromW is smaller. Thus, in the experi-
ments, we set d to be 30 which can ensure the efficiency while
not sacrificing too much clustering power. Fig. 3 shows the
performance of ESCG-R w.r.t. varying number of iterations
t on the four data sets. It can be seen that the performance
generally improves as the number of iterations grows.

6 Conclusion
In this paper we tackle the scalability issue of spectral cluster-
ing methods on large-scale graphs. We propose a method to
reduce graph size, based on effectively compressing the graph
information into a smaller number of “supernodes”. Clus-
tering supernodes with spectral methods is less expensive,
and the clustering results can also be propagated back to the
original graph with low cost. We reduce the computational
complexity of spectral clustering significantly, fromO(n3) to
O(md+ nd log n+ nd2). Although graph compression nat-
urally induces inaccuracy, empirical studies demonstrate that
our method can considerably decrease the necessary runtime
while posting a tolerably small loss in accuracy.

7 Acknowledgment
This work was supported in part by the U.S. National Science
Foundation grants IIS-0905215, U.S. Army Research Labora-
tory under Cooperative Agreement No. W911NF-09-2-0053
(NS-CTA).

References
[Brandes et al., 2003] U. Brandes, M. Gaertler, and D. Wag-

ner. Experiments on graph clustering algorithms. In In
11th Europ. Symp. Algorithms, volume 2832, pages 568–
579. Springer, 2003.

[Chen and Cai, 2011] X. Chen and D. Cai. Large scale spec-
tral clustering with landmark-based representation. In
Proc. of the 26th AAAI Conf. on Artificial Intelligence
(AAAI), pages 313–318, 2011.

[Chen et al., 2006] B. Chen, B. Gao, T. Liu, Y. Chen, and
W. Ma. Fast spectral clustering of data using sequential
matrix compression. In Proc. of the 17th European Conf.
on Machine Learning (ECML), pages 590–597, 2006.

[Chen et al., 2011] W. Chen, Y. Song, H. Bai, C. Lin, and
E. Y. Chang. Parallel spectral clustering in distributed sys-
tems. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 33(3):568–586, 2011.

[Dalvi et al., 2008] B.B. Dalvi, M. Kshirsagar, and S. Sudar-
shan. Keyword search on external memory data graphs.
Proc. of the VLDB Endowment (PVLDB), 1(1):1189–
1204, 2008.

[Dhillon, 2001] I.S. Dhillon. Co-clustering documents and
words using bipartite spectral graph partitioning. In Proc.
of the 7th ACM SIGKDD Int. Conf. on Knowledge Discov-
ery and Data Mining (KDD), pages 269–274, 2001.

[Fortunato, 2010] S. Fortunato. Community detection in
graphs. Physics Reports, 486(3-5):75–174, 2010.

[Fowlkes et al., 2004] C. Fowlkes, S. Belongie, F. Chung,
and J. Malik. Spectral grouping using the nyström method.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (TPAMI), 26(2):214–225, 2004.

[Gupta et al., 2012] M. Gupta, J. Gao, Y. Sun, and J. Han.
Integrating community matching and outlier detection for
mining evolutionary community outliers. In Proc. of the
7th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining (KDD), pages 859–867, 2012.

[Herman et al., 2000] I. Herman, G. Melançon, and M.S.
Marshall. Graph visualization and navigation in informa-
tion visualization: A survey. IEEE Transactions on Vi-
sualization and Computer Graphics (TVCG), 6(1):24–43,
2000.

[Khoa and Chawla, 2012] N. Khoa and S. Chawla. Large
scale spectral clustering using resistance distance and
spielman-teng solvers. In Proc. of 2012 Int. Conf. on Dis-
covery Science, pages 7–21, 2012.

[Liu et al., 2007] T. Liu, H. Yang, X. Zheng, T. Qin, and
W. Ma. Fast large-scale spectral clustering by sequen-
tial shrinkage optimization. In Proc. of the 29th European
Conf. on IR Research (ECIR), pages 319–330, 2007.

[Miao et al., 2008] G. Miao, Y. Song, D. Zhang, and H. Bai.
Parallel spectral clustering algorithm for large-scale com-
munity data mining. In The 17th WWW workshop on So-
cial Web Search and Mining (SWSM), 2008.

[Ng et al., 2001] A. Ng, M.I. Jordan, and Y. Weiss. On spec-
tral clustering: Analysis and an algorithm. In Advances
in Neural Information Processing Systems (NIPS), pages
849–856. 2001.

[Sakai and Imiya, 2009] T. Sakai and A. Imiya. Fast spec-
tral clustering with random projection and sampling. In
Proc. of the 6th Int. Conf. on Machine Learning and Data
Mining in Pattern Recognition (MLDM), pages 372–384,
2009.

[Shi and Malik, 1997] J. Shi and J. Malik. Normalized cuts
and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 22(8):888–
905, 1997.

[Shinnou and Sasaki, 2008] H. Shinnou and M. Sasaki.
Spectral clustering for a large data set by reducing the sim-
ilarity matrix size. In Proc. of the 6th Int. Conf. on Lan-
guage Resources and Evaluation (LREC), 2008.

[Smyth and White, 2005] P. Smyth and S. White. A spectral
clustering approach to finding communities in graphs. In
Proc. of the 5th SIAM Int. Conf. on Data Mining (SDM),
pages 76–84, 2005.

[Song et al., 2008] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li,
W. Lee, and C. Giles. Real-time automatic tag recom-
mendation. In Proc. of the 31st Annual Int. ACM SIGIR
Conf. on Research and Development in Information Re-
trieval (SIGIR), pages 515–522, 2008.

[Yan et al., 2009] D. Yan, L. Huang, and M.I. Jordan. Fast
approximate spectral clustering. In Proc. of the 7th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD), pages 907–916, 2009.

